Ob Standard, Contextual oder Cookieless Targeting – für jede Kampagne die richtige Zielgruppe: Browse durch über 700 reichweitenstarke und qualitativ hochwertige Segmente und kopiere deine Auswahl gleich in deine genutzte DSP zur einfachen Suche oder Buchung.
So funktioniert’s
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Scififilmen aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Sport-TV aufweisen. Der Nutzer muss in den letzten sieben Tagen mindestens fünf Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Streaming aufweisen. Der Nutzer muss in den letzten sieben Tagen mindestens fünf Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Thrillern aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an TikTok aufweisen. Der Nutzer muss in den letzten 7 Tagen mindestens 2 Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Trash TV aufweisen. Die Grundlage zur Hochrechnung bilden Bewegungsdaten. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Fernsehserien aufweisen. Der Nutzer muss in den letzten sieben Tagen mindestens fünf Webseiten zu dem entsprechenden Thema besucht haben. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an „Video on Demand“-Diensten aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich häufig auf Links bei YouTube klicken. Der Nutzer muss in den letzten 14 Tagen mindestens einmal YouTube als Referrer haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die angeben, Student zu sein. Die Grundlage zur Hochrechnung basiert auf adality Daten. Die Grundlage zur Hochrechnung bilden Umfragedaten. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Beautyprodukten wie Make-Up, Pflegeserien und -produkten für Körper und Haar sowie an Düften, Körperkult, Diäten und Frisuren aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.konkr
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Mode und Fashion sowie aktuellen Trends, Modeshops und Blogs, Kleidung, Asccessoires und Shoppingthemen aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an hochpreisigen Produkten wie Designartikeln, Schmuck, Uhren, hochpreisigen Autos und Immobilien aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Sonnencreme aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an nachhaltiger Kleidung aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Modetrends aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Frauenparfums aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an der Marke Apple aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Telekommunikation aufweisen. Die Grundlage zur Hochrechnung bilden Informationen aus der Transaktionsdatenbank von AZ DIAS. Durch unterschiedlichste Kooperationspartner hat die AZ Zugriff auf aktuell ca. 320 Millionen Transaktionsdaten. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnitllich häufig auf mobilen Webseiten surfen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an der Marke Huawei aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die sich in der Themenwelt des Festnetz-Telefon & des Internets bewegt haben. Die Grundlage zur Hochrechnung bilden Daten von gutefrage.net. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die überdurchschnittlich hohes Interesse an Festnetz- und Internetanschlüssen aufweisen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die auf mobilen Webseiten surfen. Der Nutzer muss in den letzten 14 Tagen mindestens zwei Webseiten zu dem entsprechenden Thema besucht haben.
Verfügbar auf diesen DSPs:
Beinhaltet Nutzer, die sich in der Themenwelt des Mobilfunks bewegt haben. Die Grundlage zur Hochrechnung bilden Daten von gutefrage.net. Die Hochrechnung erfolgt mittels Lookalike-Modellierung.
Verfügbar auf diesen DSPs: